Proceedings of the First European Congress on Fuzzy and Intelligent Technologies, EUFIT?93, Aachen, 7-10 Septem-
ber 1993, pp. 1097 - 1104.

Self-Organizing and Genetic Algorithms for an Automatic Design

of Fuzzy Control and Decision Systems

Hartmut Surmann, Andreas Kanstein, Karl Goser
University of Dortmund, Faculty of Electrical Engineering
44221 Dortmund, Germany
Phone: +49 231 7554324, Fax: +49 231 7554450

Email: surmann@luzi.e-technik.uni-dortmund.de

Abstract: An automatic design method is proposed for fuzzy control and decision/diagnosis systems. This
method extends traditional fuzzy systems by a learning ability without changing the fuzzy rule framework.
The fuzzy rules and linguistic variables are extracted from a referential data set by a self-organizing process.
A genetic algorithm is used to find optimal input/output membership functions.

Keywords: Fuzzy Control, Neural Networks, Genetic Algorithm, Automatic Design of Fuzzy Systems

I. Introduction

The transfer function of a fuzzy system (FS) is not based on a mathematical model but it is given by
the definition of fuzzy rules and fuzzy sets of linguistic variables [1]. The fuzzy rules and fuzzy sets are
designed on the basis of human operator’s experiences, decisions and control actions. Like in conventional
expert systems, the operator often cannot clearly explain why he acts in a certain way. Then an automatic
design method becomes important, which is based on a set of examples for input/output relationship named
referential data set. The methods derived from neural algorithms found in the literature can be divided into
two levels. On the first level Pedrycz [2], Lin & Lee [3], and Kosko [4] use self-organizing procedures to
design fuzzy systems. On the second level Lin & Lee [3], and Glorennec [5] transfer fuzzy systems in a neural
structure to optimize the input/output behavior of the system. But the neural structure of the system has
some disadvantages. The symbolic framework which represents structured knowledge is given up. Also its
computing effort is quite high. Particularly the microelectronic realization of such networks seems to be very
difficult. Due to its regular and modular structure the basic fuzzy control algorithm offers good and fast
realization possibilities [6, 7]. As well as Lin & Lee, we propose a two step design method. In the first step
we are searching for decision relevant situations and their consequences analogous to human learning. This
will be done unsupervised with the self-organizing feature map (SOFM) [8], which is described in the second
section. The information of the feature map will be used to construct an initial fuzzy rule base (section
IT1.). In the second step of the design process a genetic algorithm is used to optimize the input/output
behavior and to reduce the complexity of the fuzzy system. This is described in section four. In section V.
an application of the design method on Anderson’s iris data [9] and Box & Jenkins’ gas furnace data [10]
and a comparison to other results are given. Finally, some remarks on future research will conclude this

paper.
II. Self-organization for the extraction of fuzzy points

The first step in the design of a problem which is to be solved by a fuzzy controller is the determination
of the membership functions for the linguistic variables. Here the membership functions are defined with
fuzzy points. These can be interpreted as the locations of clusters in the universe of a linguistic variable.
Estimations of these fuzzy points will be computed with a SOFM, as described in the following.

First, we summarize the basic terminology and learning rule incorporated in SOFMs. Usually the map
consists of a two dimensional array of processor elements (PEs), which are completely connected to all input
nodes. At these, patterns & € R” are presented, so each PE stores an n-dimensional weight vector w € R”.
The unsupervised learning algorithm is an iterative, sequential process which finds the “best” set of weights
for clusters in the universe of the learning patterns # € X.

As Lin & Lee [3], we use this feature of the SOFM to estimate centers m of fuzzy points of every vector
component z;, j = 1,...,n. In contrast to Lin & Lee, also the information given by the components of
the weight vectors will be evaluated to construct the rule base. Only a one dimensional SOFM is used to
compute ¢ weight vectors, so the number of PEs equals the number of fuzzy points and the dimension of the
weight vectors corresponds to the number of input and output variables. At the end of the learning process

every weight w;; can be regarded as an estimator m;; for the center m;; of the fuzzy point ¢ of the linguistic
variable j.

As advocated by Kohonen [8], the learning algorithm modifies the weight vectors & to reflect the structure
and frequency occurring in the original input vectors. For a given input vector, the PEs compete among
themselves and the winner (the PE which has the minimum distance to the input) performs the updating
operation of its weight and the weights of some predefined neighbors. This update process is continued for
a predefined number of learning cycles. So, the closer two input vectors &, Z; € X, the more evident their
neighborhood property is visualised in the resulting map.

To compute the weights, a learning rate h(t,r(#)) and an adaptation radius r(¢) which decreases expo-
nentially with learning cycle ¢ have to be defined, as well as the number of learning cycles ¢{max and a norm
[| -]]. The update strategy is random but fair, that means in one learning cycle all p input (referential)
vectors £ € X are trained in a random sequence. A brief specification of the learning algorithm is:

1. Select ¢, the norm || - ||, tmax, 7(0), 7(tmax) € [0, ¢], and h(0,7(0)), A(tmax, 7(tmax)) € [0, 1].
2. Initialise w;; € R at random,:=1,...,¢,5=1,...,n.
3. Fort =0,...,tmax — 1; For all Z € X;

(a) Calculate d; = || — @y|[,i=1,...,¢
(b) Compute the position i; of the winner: d;, = min{d;|i = 1,...,¢}.
(c¢) Update the weights: If w; € {W, | i1 — r(t) < 2 < iy + r(t)} then &; = @ + h(t, r(t))(F — ;).

In the examples (section V.), the euclidean norm (d; = ZJ(

— wj
parameters are set as follows: tmax = 200, A(0) = 0.9, h(tmax, r(¢ max))

)?) is selected for || - ||. The other
0.1, »(0) = ¢, r(tmax) = 0.001.
ITII. Fuzzy points and rules

As described above, the weight w;; can be regarded as an estimator of the center of a fuzzy point (7m;; = w;;).
Since the genetic algorithm (section TV.) will optimally adjust the centers and the widths of the fuzzy points,
the widths can be estimated by the first-nearest-neighbor heuristic [3]: &;; = |[Mij — Mnearest j|/7, With an
arbitrary overlap parameter r. The width &;; of the fuzzy point is only a poor estimator for the standard
derivation o;;, in contrast to the weight w;; of the SOFM, which is a good estimator for the center (mean
value m;;) of a cluster.

As 1t becomes clear from this description, our view of fuzzy points is statistically based. This will
be explained in the following. The basic elements for the problem of practical estimation of membership
functions are defined within the theory of possibility introduced by Zadeh [11]. He states that “ ... —
contrary to what has become a widely accepted assumption — much of the information on which human
decisions are based is possibilistic rather than probabilistic in nature.” Furthermore, possibility is related to
probability, because “ ... a lessening of the possibility of an event tends to lessen its probability — but not
vice versa.” Interpreting this possibility /probability consistency principle, Dubois & Prade [12, p. 258] give
a mathematical criterion of the association of the possibility and probability distributions

T(D) = sup h(z)/suph > P(D) = /Dh(x)dx//_oo h(z)de, (1)

€D

in which A is a function h : R — R1 representing a smoothed histogram.

As it can be seen from (1), the possibility distribution is described by a possibility density function
7(2) = h(z)/sup h, analogous to a probability distribution, which is defined by a probability density function

(x) = h(x)/ [~ Rh(&)dE. The distributions differ in the norm used to evaluate the histogram. The norm

f_t’; p(x)dx = 1 stresses the need of global information about the presented measure, while with sup 7 = 1
only local relations are used.

membership functions can be defined simply from possibility distributions by u(2) = w(z). But this way
of constructing membership functions is not really suitable, because h cannot always be calculated and needs
not to fulfill equation (1). Furthermore, () needs not to be convex.

Instead of this, we will construct membership functions from probability density functions by p(z) =
Ap(z). The constant A is calculated using the constraint sup g4 = 1. Here the gaussian probability distribution

p(z) = @(z;m,0?) is chosen, because this distribution fits a lot of real world problems. Therefore, the
membership functions used in our system are defined by

u(x) = oVIT pla;m, 0%) = exp (—ﬂ) | 2

202

The advantage of this definition is that p(2) and also u(z) are described by the parameters expectation
value m and variance o?. As explained before these parameters can be estimated by use of a SOFM.

At the left and right margin of the input linguistic variables special margin membership functions are
defined. They will be derived from the normalised (m = 0, ¢? = 1) membership functions

1 ,x <0 .
Nleft(l’) = { _ 1,2 >0 /Jright(il') = {

ez ,

1 ,z >0
1,2
e”2% <0

(3)

In a fuzzy control and decision system, fuzzy rules define the connection between input and output
variables. Like the fuzzy points, the rules will be derived from the weight vectors of the SOFM. The weight
vector’s components w;; represent fuzzy points 7 of linguistic variables j, so every vector @; holds information
about the connection between variables. This information will be used to construct the rules of the FS.

Here, fuzzy rule bases will be described for two basic problems, a classifier system and the simulation of
a dynamic process. First, we consider a classifier problem with ¢ classes, which is described by a referential
data set with p patterns. It holds p; patterns F}C (k=1...p;,i=1...q,>,;pi =p) for every class i. The
classes need not to be mutually unrelated. With this referential data set a SOFM with ¢ weight vectors is
trained. Then, from every weight vector w;, i = 1,...,q a fuzzy rule for class ¢ is defined:

if Xy 1s A;; and X5 is A; and ...and X, 1s A;, then Y] is no and ...and Y;_; is no and Y; is yes
and Y;4; is no and ...and Y, is no.

A;; is a label for the fuzzy point with center m;;, Y; is the output variable for the class ¢, and yes, no are
labels for the fuzzy points

o 2w+1 ,-05<z<0 o 22—1 , 05<z<1 A
Ho(®) =\ _9p 41 . 0<a<05 el = _9243 . l<a<l5)

In contrast, the referential data set for process simulation consists of p vectors 7 of dimension n =
Nin + Nout. Therefore, the weight vectors of the SOFM define ni, input and nqy: output variables with ¢
fuzzy points each. For process simulation, the rule base should be complete, i.e. for every input at least one
rule fires. Therefore, the premises are conjunctive combinations of all input variables with permutated fuzzy
points. This implifies that ¢™i» rules such as

if Xy is A} and X, is A} and ...and X, is A, then Y; is B] and ...and Y,

ows 18 B
are defined, in which the fuzzy point A;- is determined by m;;,6;; and the permutation of the index 1.

To determine the BJ’-, j = 1,...,nout of a rule, the center points my, & = 1,...,n;, of the premise’s
fuzzy points are combined to an input vector for the SOFM. Then the most similar PE ;, is computed
for this input vector. Thereby only the first n;, components are taken in consideration. From the output
components of the winning PE j;, the centers m} of the B} are determined as m| = wi, nj,41, My =
Wiy nin+2y - --)m;’LQ“t = Wiy nin+nont-

Notes on fuzzy sets and rules generation

¢ Computing time increases approximately linear with the number of the input patterns (Size of the refer-
ential data set).

o Storage capacity increases linear with the number of linguistic variables. The extension by a new linguistic
variable can be done easily by increasing the weight vector dimension.

o A fuzzy point (set) is defined by only two parameters m, 7.

e Conventional experienced methods can be used to determine the fuzzy sets and fuzzy rules.

IV. Genetic algorithm for adaptation

The adaptation aims for an improvement of a specified system behavior in respect to a new or changing
task. Therefore, adaptation is a sort of optimization or search process. In difference to the common aim of

optimization, i.e. finding the best solution, adaptation means searching for improvement. Furthermore, for
adaptation of a FS a robust algorithm is needed which can cope with complex search (parameter) spaces.

There is no theoretical approach that defines an optimal FS for a given task. Therefore, adaptation is
a method to compute well designed FS. A general FS is very complex. Even when parts of the structure
are fixed, e.g. by a hardware implementation, a lot of free parameters remain. Especially the fuzzy sets
are important for fine tuning the transfer function of the system. In contrast, the rule base is less flexible,
even when the rules are weighted. Considering the number of parameters of all fuzzy sets, the search space
becomes very complex.

A suitable optimization algorithm for the adaptation of a F'S is the genetic algorithm (GA) introduced
by Holland, which is described in detail by Goldberg [13].

Like artificial neural networks, genetic algorithms are based on a biological concept: The concept of
evolution. In difference to natural evolution, GAs are limited to the analysis of one system (here a FS with
specific task) at a time, which is described by a parameter set. Furthermore, the GA uses a population P of
constant size M, i.e. a variety of M systems. The population P develops in discrete time steps ¢, and the
populations P(¢) are called generations. The algorithm terminates after T' time steps.

The development of the population with each time step is directed by competition between population
elements. The information needed is a measurement for each FS performance quality, the fitness). The
objective function @ has to be a positive value which increases with system’s quality. Competition between
population elements is included by relating this fitness to the total fitness of the population. The related
measure is called strength. For calculation of a new generation (genetic) operators are used which work on
a coding of the systems parameter sets, named strings. Therefore, the population elements are completely
defined by their strings A, so P = {41, As, ..., Ay}

Binary coded parameters are used to construct a string. Every string A will hold all fuzzy set parameters
m;; and 055, i = 1,...,n, j = 1,...,¢q of a FS (as proposed by Karr [14]). The parameters are linearly
transformed to integers of [bits accuracy (e.g. [= 8 bits) with constant limits for every variable. Denoting
the coded fuzzy set parameters m;; and 65, a string A is constructed by adding the parameters in a row:

A=mi1611M12012 ... mnq&nq:a1a2... ayaj41 ... AL, a € {O,l} (5)
———
mll

The length L of a string is L = 2Ing.

The calculation of a new generation P(¢ 4+ 1) from P(¢) is done by sequentially applying the operators
selection, mutation and crossing over:

First, two strings A, B € P are selected and copies A' and B! of A and B are made. The probability of
the selection of a specific string is proportional to its strength.

Second, each of these two strings are eventually changed by mutation. A mutated string A2 is calculated
by changing every a;, i = 1,..., L of A' with the probability pmus. B? is calculated the same way.

Third, with the probability peross a crossing over of A2 and B2 is executed. A crossing point z, 1 <z < I,
is chosen at random and then new strings A% and B? are constructed as

A3 :a1a2...(1x_1bxbx+1...bL, BS :b1b2...bx_1(1£(1x+1...(1L. (6)

If no crossing over is performed, then A3 = A? and B3 = B2

Finally A3 and B3 are taken into the new population. The calculation of new string pairs is repeated
until the new population is filled. Then the fitness of the new population members is calculated and it can
be proceeded with this population.

The parameters of the algorithm can be selected as follows. Fixed values are chosen for the algorithm’s
random parameters, s0 pmut = 0.01 and peross = 0.8 (see [13]). M and T will be selected according to the
system complexity.

At each time step t one is mainly interested in the performance of the best FS, i.e. in the string with the
highest fitness value f. At time step ¢ = 7" this string is also viewed as the result of the GA. To preserve the
best string of time step ¢ from being changed by the genetic operators, this string might be copied unchanged
into the next generation. This strategy called fittest survive does not always increase the performance of the
algorithm, as it is shown in Fig. 1.

The fitness function itself depends on the task of the FS. Examples are given in section V.. For fitness
calculation, a FS has to be constructed from each string and tested by evaluating the referential data set.
Therefore, a lot of FS executions are needed. A discrete FS with a very fast evaluation method is used
for this task (section V.c). The coding used for the GA matches the use of a discrete FS. In addition, the
coding’s limitations due to discretization and constant intervals are of small importance, because FSs are
robust and the range of the referential data set is also limited.

6 - .
5 - .
fbest
4 - .
3F . normal — A
with fittest survive —
2 1 1 1 1
0 100 200 300 400 500

evolution step ¢
Figure 1: Convergence of the best population element for an arbitrary example with and without the strategy
fittest survive.

| model | rule array | remarks errors J
Box & Jenkins [10] Linear time series analysis with 6 parameters 0.196
with an oscillation model (feedback) 0.058
Tong [19] TX6 reduced to 19 rules 0.469
Pedrycz [2] 5%x5 reduced to 20 rules 0.776
9x9 0.32
Xu & Lu [20] 5%x5 after identification 0.4555
5x5 after adaptation 0.328
Sugeno & Yasukawa [21] 5%x5 reduced to 6 rules 0.355

Table 1: Results from literature for FSs with the gas furnace data. The column “rule array” contains the
number of fuzzy sets per input variable.

Notes on Genetic Algorithms

o GAs work with a population of competing solutions. Therefore, the algorithms can escape from local
fitness maxima in the search (parameter) space.

o The genetic operators are probabilistic and are applied to coded parameter sets only. They are independent
from the structure of the search space. Therefore, GAs are robust.

o Execution time grows linear with population size M, evolution steps T and length of strings L (under the
assumption that FS calculation time is proportional to the number of fuzzy sets).

V. Examples

The design algorithm will be illustrated by means of two numerical examples to present the most charac-
teristic features. For process simulation Box & Jenkins’ gas furnace data set is used, which is a standard
test for identification algorithms (Tab. 1). The data set consists of 296 pairs of input-output observations
measured every 9 seconds. The input is the gas flow rate into the furnace and the output is the concentration
of COj in the exhaust gas.

Second, for the decision system we use Anderson’s iris data set [15]. This data set consists of p = 150
(labelled) vectors (4 components) for ¢ = 3 classes of iris subspecies (50 for each class). The properties of
the data are well known and are used in various papers to illustrate unsupervised and supervised classifier
designs. Typical error rates are 0...5 mistakes (resubstitution) for supervised and 10...15 for unsupervised
designs [16].

As both design steps are influenced by random numbers, several simulations with different initial condi-
tions were performed. Therefore, for most of the results two values are given (best and worst case). Also
different composition/defuzzification methods are used (max-min, max-product and sum-product) [17, 18].
The membership functions are approximated with different numbers of lines, i.e. with 6 lines (u(z) = 0 for

z ¢ [m—2.90,m+ 2.90]), and 2 lines (triangular) (u(z) = 0 for z & [m — 2.50, m + 2.50]).

V.a Iris Data

Self-organizing map: For an initial FS we select ¢ = 3 processor elements with n = 4 components and
an overlap factor of r = 2. The resulting fuzzy classifier system (FCS) achieves 12 ...15 mistakes (tested

| shape | inference | afb | Roaz | 1/Q3?§ | Ry | max(Ract) |

gauss | sum-product | 0.0/0.0 0.161...0.182 | 9...17 | 20...25%2
gauss | sum-product | 0.5/0.5 10 0.177 ...0.216 | 4...5 6...9%7
triang. | sum-product | 0.0/0.0 0.161...0.188 | 9...11 | 15...16"
triang. | sum-product | 0.5/0.5 10 0.172...0.235 | 5...7 6...1212
gauss max-min 0.0/0.0 - 0.208 ...0.237 | 12 ...19 20 ...257
gauss max-min 0.5/0.5 10 0.242...0.284 | 4...10 8...16"
triang. max-min 0.0/0.0 - 0.187 ...0.257 | 8 ...13 20 ...25"
triang. max-min 0.5/0.5 10 0.195 ...0.26 4...7 9...12"
| gauss | sum-product | 0.5/0.5 | 10 | 0.142 | 10] 15 |

Table 2: Optimization results with different inference methods and different membership function shapes for
the gas furnace data, p' = 292, rule array 5 x 5', 5 x 42 and 4 x 52, 4 x 33, 5 x 3*. The result of the last row
is achieved with p' = 234 (80%).

with different composition/defuzzification methods and fuzzy set shapes). A FCS which is generated super-
vised by statistical analysis of the referential data set achieves 5 mistakes, independently of the composi-
tion/defuzzification method and the shape of fuzzy sets.

To reduce the complexity, the excess n (n = E(z — m)*/o* — 3) of each input variable is computed. An
input with small |n| is not evaluated. In both examples, with |n|pnin = 1 only the components 3 and 4 have
been evaluated. In this way the number of linguistic variables is reduced and the clarity of the fuzzy rule
base (FRB) increases.

Genetic algorithm: An other problem beside the creation of coded strings (section TV.) is the definition
of a suitable objective function. A suitable objective function for the classification problem is the sum of
the hamming distances of the class membership values a; and the nominal values (coded with [= 8 bits,

20 — 1 =255 = true, 0 = false).

255 . ((255 —a;) + >_0ont. L a5)? | if a; failed
Qo,q = pfp with ¢; = nJmLHf J
(255 —a;) + 3520 0 , else

i=1 Qz

(7)

Independent of the shape and composition/defuzzification method, the resulting FS achieves two mistakes
after T' = 200 time steps with a population size of M = 200. The initial population is calculated with the
centers and widths of the fuzzy points and a random variance of these parameters. The best result (one
mistake) can be achieved evaluating the components 1, 3 and 4 of the input vector.

V.b Gas Furnace Data

Self-organizing map: In this example, the task is to build a rule based model from the referential data
set which identifies the process. Particular for the process control, the referential data set can contain the
observations and the control actions of a human operator. As well as the literature (Tab. 1), we choose two
input variables (n;, = 2: 2(t — m1),y(t — 72)) and one output variable y(¢). z(t — 1) denotes the input at
the time ¢ — 7 and y(¢ — 72) the output of the process at ¢ — 7o. With 7 = 4 and 73 = 1, the referential
data set contains p = 296 — 7 = 292 elements.

For the self-organizing identification, we select ¢ = b fuzzy sets for each input/output variable. For that,
the medium square distance of the FC output to the referential data is I/Qg?f = 0.88...0.89 (equation 8).
Simulations with different numbers of input vectors p’ (all, 80%, 60%, 40% of p, random chosen) during the
training phase show results of 1/Q3°2 =0.6...1.1.

Genetic algorithm: For process simulation, the reciprocal of the mean square error is a suitable objective
function:

o { 0 ,if one a; undefined ()

DL P i (e —ai)®else
The GA generates new membership functions for a fuzzy process simulation system (FPSS). Compared to

the literature (Tab. 1), this system achieves the best results (referring to the input/output values). The
analysis of the internal states of the fuzzy controller (FC) shows that for every input vector a lot of rules

variable 1 variable 1

Figure 2: Membership functions of the first variable after optimization, with and without entropy reduction.

are activated and that the overlap and position of the membership functions does not correspond to human
expectation and definitions (Fig. 2). So, the next step is to modify the objective function to reduce the
number of activated rules. We define the entropy of a FS by the average number of activated rules:

R¢ — Ef:l -IRCLCt,i (9)
p
To decrease the entropy of a FS and the overlap of the membership functions, we define a nominal number
Rpae of activated fuzzy rules and modify the objective function by:

1
P

G:c Rpae < R
Ry) max act
(et = Dat(2s —1)b+1
Q= mas maz (10)
g.c , else

R
e
(Frmay —DbH1

Rpae € N: nominal number of activated rules, R,.; € N: actual number of activated rules, a,b € R.

If limitations such as a hardware restriction of a FS exists a factor ¢ > 0 punishes a FS which activates
too many rules for one input (local). The factor b works more global and punishes the FS if the average
number of activated rules is too big. The results due to the input/output performance can be regarded in
Tab. 2 (Rmar = 10). An example of the membership functions is given in Fig. 2.

Notes on decreasing the entropy of a fuzzy system

e Takes hardware limitations in consideration.

o Increases the process performance.

o Limits the width of the membership functions and, if ¢ = 0, reduces the complexity (number of rules and
membership functions).

e Corresponds to human expectations.

V.c Hardware requirement

A general purpose simulator for the proposed approach for SOFM, GA and FS has been written in C and
C++ language and runs on a PC-486 and Sun SPARCstation. For a local area network with different
workstations a distributed version of the SOFM and the GA is implemented. The computation time for the
GA was about 50 minutes for the gas furnace data (p = 292,7 = 500, M = 500) with 5 sun workstations
(= 33 MIPS,, workstation utilization: 50%) and about 10 minutes for p = 292,77 = 200 and M = 200.

In addition, a fuzzy development system [22] offers several possibilities including process simulation, fuzzy
rule debugging and 2D /3D visualisation. A general purpose ANST C-Code generator with a rule matching
speed of 0.3...1.0 million fuzzy rules/second (PC-486/33 MHz) and 1.0...2.3 MFRPS (sparcl0 70 MIPS)

is also implemented (gas furnace simulation).

VI. Conclusion

Several conclusions may be drawn from these investigations. The proposed model introduces the self-
organizing capabilities of neural networks and the optimization capabilities of genetic algorithms into a

fuzzy control and decision system and provides high-level human-understandable fuzzy rules. The fuzzy rule
framework of the proposed system is not changed in contrast to neural fuzzy architectures [3, 5]. This allows
a high rule matching speed and offers the possibility of a microelectronic realization [6, 7] of a general pur-
pose adaptive fuzzy controller. Furthermore neural networks tend to hike in local optima, while the genetic
algorithm reduces this possibility. Two examples of the design system demonstrate two major applications
(fuzzy controller, fuzzy decision). Future research will focus on microelectronic realization of adaptive fuzzy
controllers as well as different applications.

Acknowledgements: This work has been supported partly by the VW-Stiftung Hannover and the german
department for research and technology BMFT, contract number 413-5893-01 IN 103 B/O. The authors
would like to thank our students Kai Heesche and Martin Bieroth for their assistance.

VI. List of References

[1] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEFE
Transactions on Systems, Man, and Cybernetics, vol. SMc-3, pp. 28 — 44, 1973.

[2] W. Pedrycz, “An identification algorithm in fuzzy relational systems,” Fuzzy Sets and Systems, vol. 13, pp. 153
167, 1984.

[3] C.-T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control and decision system,” ITEEE Transactions
on Computers, vol. 40, pp. 1320-1336, 1991.

[4] B. Kosko, Neural Networks and Fuzzy Systems. Englewood Cliffs NI: Prentice Hall, 1991.

[5] P.-Y. Glorennec, “A Neuro-Fuzzy Controller with variable geometry,” in Proceedings of FUZZ-IEEE 92, San
Diego, 1992.

[6] H. Surmann, T. Tauber, A. Ungering, and K. Goser, “Architecture of a fuzzy-controller based on field pro-
grammable gate arrays,” in 2nd International Workshop on Field- Programmable Logic and Applications, 1992.

[7] A. Ungering, K. Thuener, and K. Goser, “Architecture of a PDM VLSI Fuzzy Logic Controller with Pipelining
and Optimized Chip area,” in Proceedings of IEFE-FUZZ 1993, San Francisco, 1993.

[8] T. Kohonen, Self-Organization and Associative Memory, ch. 5. Self-Organizing Feature Maps. Berlin: Springer,
1984.

[9] J. C. Bezdek, “Numerical taxonomy with fuzzy sets,” Journal of Mathematical Biology, vol. 1, pp. 57 — 71, 1974.

[10] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control. San Francisco CA: Holden
Day, 1976.

[11] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and Systems, vol. 1, pp. 3 — 28, 1978.

[12] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications, vol. 144 of Mathematics in Science
and Engineering. Boston: Academic Press, 1980.

[13] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Reading, Massachusetts:
Addison-Wesley, 1989.

[14] C. L. Karr, L. M. Freeman, and D. L. Meredith, “Improved fuzzy process control of spacecraft autonomous
rendezvous using a genetic algorithm,” SPIE Intelligent Control and Adaptive Systems, vol. 1196, pp. 274 288,
1989.

[15] E. Anderson, “The Irises of the Gaspe Peninsula,” Bulletin of the American Iris Society, vol. 59, pp. 2 — 5, 1935.

[16] J. Bezdek, E. C.-K. Tsao, and N. R. Pal, “Fuzzy kohonen clustering networks,” in Proceedings of FUZZ-IEEE
’92, San Diego, pp. 1035 — 1043, 8-12.3.92.

[17] W. J. M. Kickert and E. H. Mamdani, “Analysis of a fuzzy logic controller,” Fuzzy Sets and Systems, vol. 1,
pp. 29 44, 1977,

[18] I. Togai Infralogic, FC110 DFP Digital Fuzzy Processor, Operation Manual. 30 Corporate Park, Suite 107,
Irvine, CA 92714: Togai InfraLogic, Inc, 1991.

19] R. M. To “The evaluatio ()ff]ZZy odels derived fro experimental data,” Fuzzy Sets and Systems, vol. 4
g, p ’ Y Y ’ ’

[20] C.-W. Xu and Y.-Z. Lu, “Fuzzy model identification and self-learning for dynamic systems,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. sMc-17, pp. 683 — 689, 1987.

21] M. Sugeno and T. Yasukawa, “Linguistic modeling based on numerical data,” in Proceedings of IFSA ’91 Brussels:
g g g
Computer, Management & Systems Science, 1991.

[22] H. Surmann, K. Heesche, M. Hoh, K. Goser, and R. Rudolf, “Entwicklungsumgebung fiir Fuzzy-Controller mit
neuronale Komponente,” in VDE-Fachtagung Technische Anwendung von Fuzzy-Systemen, pp. 288 — 297, 1992.

