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Abstract— In this paper, we present a new combination of
a biologically inspired attention system with a robust object
detection method. As an application, we built a reliable system
for ball recognition in the RoboCup context. Firstly, a visual
attention system finds regions of interest generating a hypothesis
for possible locations of the ball. Secondly, a fast classifier
verifies the hypothesis by detecting balls at regions of interest.
The combination of both approaches makes the system highly
robust and eliminates false detections. Furthermore, the system
is quickly adaptable to balls in different scenarios: The complex
classifier is universally applicable to balls in every context and the
attention system improves the performance by learning scenario-
specific features quickly from only a few training examples.

I. INTRODUCTION

A fundamental problem in the field of robotics is the
perception of the environment. Our work is inspired by the
biological two stage process of searching for an object in a
visual scene [16]: First, human attention is caught by regions
with object-specific features such as color or orientations.
Second, recognition processes restricted to these regions verify
or falsify these hypotheses. Our system is designed after these
two stages.

This paper proposes a scheme for learning and detecting
soccer balls through the combination of a computational
attention system with a classifier. Recognizing soccer balls
as an application in the Robot World Cup Soccer Games and
Conferences (RoboCup) [8] has been a tough problem to solve
because of the lack of definite characteristics describing a ball.
Our solution is reliable, scale-independent and color-adaptable
in the sense that it can be applied to balls of any size, surface
pattern and color.

Our approach consists of a training phase, an adaptation
phase, and a detection phase. In the training phase, the classi-
fier is exhaustively trained using balls of different sizes, colors,
and surface patterns from a wide variety of training images.
The output of the training is a cascade of classifiers that in
turn consist of a set of decision trees. In the adaptation phase,
the attention system is quickly adapted to a special scenario: it
learns from few example images (here: 2) the properties of the
scenario, e.g., the color of the ball and its intensity contrast
to the environment. This adaptation results in a set of feature
weights describing the ball in its surroundings. In the detection
phase, first, the attention system computes regions of interest
by weighting the image features with the learned weights.
Second, the classifier is applied to these regions, verifying the
object hypothesis (Fig. 1). This approach makes the system
flexible as well as robust.
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Fig. 1. The recognition system consists of an attention system providing
object candidates and a classification system verifying the hypothesis. The
combination yields a flexible and robust system.

The visual attention system consists of a bottom-up part
computing data-driven saliency and a top-down part and
enabling goal-directed search. Bottom-up saliency results from
uniqueness of features, e.g., a black sheep among white ones,
whereas top-down saliency uses features that belong to a spec-
ified target, e.g., red when searching for a red ball. The bottom-
up part, also described in [7], is based on the well-known
model of visual attention by Koch & Ullman [10] used by
many computational attention systems [11], [1]. It computes
saliencies according to the features intensity, orientation, and
color and combines them in a saliency map. The most salient
region in this map yields the focus of attention. The top-down
part is new: it uses previously learned feature weights to excite
target-specific features and inhibit others.

Balls are classified according to the Viola-Jones classi-
fier [20]: The shape of the ball is learned by using edge-filtered
and thresholded images, represented by computationally effi-
cient integral images [20]. The Gentle Ada Boost learning
technique [5] is used to learn a selection of Classification
and Regression Trees (CARTs) that select an arrangement of
Haar-like features to classify the object. Several selections are
combined into a cascade of classifiers. This learning phase is
relatively time-consuming, but only needs to be executed once,
since the classifier is then general enough to apply to any ball
shaped object.

The most common techniques for ball detection in the
RoboCup context rely on color information. In the last few
years, fast color segmentation algorithms have been developed
to detect and track objects in this scenario [9], [18]. The
community agreed that in the near future, visual cues like color
coding will be removed to come to a more realistic setup with
robots playing with a “normal” soccer ball [19].

Treptow and Zell learn with Ada Boost conglomerations
of Haar like classifiers and arrange them in a cascade to
recognize balls without color information [19]. However, in
previous work [15] we show problems with learning non
symmetric object patterns in differently illuminated environ-
ments. To overcome this problem, we preporcessed the input



Fig. 2. The goal-directed visual attention system with a bottom-up part (left)
and a top-down part (right). In learn mode, target weights are learned (blue
line arrows). These are used in search mode (red short arrows).

with edge detection and learned classification and regression
trees (CARTs) instead of simple conglomerations of feature
classifiers and accomplished color-independent ball detection
for various balls. To reduce a significant amount of false
detections, where the classifier marked various round shapes,
e.g., the heads in Fig. 7, we propose here an attention
algorithm that is quickly adapted on the spot to a specific ball.
It yields several region hypotheses. With the combination of
both systems, we eliminate the false detections and identify
only the intersection of the two classified sets as correct. In
this way, the ball detector can efficiently be applied to more
complex images, without worrying about false detections.

An attention system has already been combined with object
classification by Pessoa and Exel [17]; they focus attention on
discriminative parts of pre-segmented objects. Miau, Papageor-
giou and Itti detect pedestrians on attentionally focused image
regions using a support vector machine algorithm [14]. Walther
and colleagues combine in [21] an attention system with the
object recognizer of Lowe [13] and show that the recognition
results are improved by the attentional front-end. Nevertheless,
all of these approaches focus on bottom-up attention and do
not enable goal-directed search. To our knowledge, this is
the first approach combining a top-down modulated attention
system with a classifier.

The rest of the paper is structured as follows: First, we
describe the attention algorithm in section II. We then discuss
briefly the process of learning and detecting balls in section III.
The results of each algorithm independently as well as in
combination are given in section IV and, finally, section V
concludes the paper.

II. THE GOAL-DIRECTED ATTENTION SYSTEM

In this section, we present the goal-directed visual attention
system which detects salient regions in images (cf. Fig. 2). The
system consists of a bottom-up part computing data-driven
saliency and a top-down part enabling goal-directed search.
The global saliency is determined from bottom-up and top-
down cues. In the following, we first describe the computation
of the bottom-up and then of the top-down saliency.

A. Bottom-up saliency

1) Feature Computations: The first step for computing
bottom-up saliency is to generate image pyramids for each
feature to enable computations on different scales. Three kinds
of features are considered: Intensity, orientation, and color. For
the feature intensity, we convert the input image into gray-
scale and generate a Gaussian pyramid with 5 scales s0 to s4

by successively low-pass filtering and subsampling the input
image, i.e., scale (i+1) has half the width and height of scale
i.
The intensity maps are created by center-surround mecha-
nisms, which compute the intensity differences between image
regions and their surroundings. We compute two kinds of
maps, the on-center maps I ′′on for bright regions on dark
background, and the off-center maps I ′′off: Each pixel in these
maps is computed by the difference between a center c and
a surround σ (I ′′on) or vice versa (I ′′off). Here, c is a pixel in
one of the scales s2 to s4, σ is the average of the surrounding
pixels for two different radii. This yields 12 intensity scale
maps I ′′i,s,σ with i ε {on, off}, s ε {s2-s4}, and σ ε {3, 7}.

The maps for each i are summed up by inter-scale addition
⊕

, i.e., all maps are resized to scale 2 and then added up pixel
by pixel yielding the intensity feature maps I ′i =

⊕

s,σ I ′′i,s,σ .
To obtain the orientation maps, four oriented Gabor pyra-

mids are created, detecting bar-like features of the orientations
θ = {0 ◦, 45 ◦, 90 ◦, 135 ◦}. The maps 2 to 4 of each pyramid
are summed up by inter-scale addition yielding 4 orientation
feature maps O′

θ.
To compute the color feature maps, the color image is first

converted into the uniform CIE LAB color space [2]. It repre-
sents colors similar to human perception. The three parameters
in the model represent the luminance of the color (L), its
position between red and green (A) and its position between
yellow and blue (B). From the LAB image, a color image
pyramid PLAB is generated, from which four color pyramids
PR, PG, PB , and PY are computed for the colors red, green,
blue, and yellow. The maps of these pyramids show to which
degree a color is represented in an image, i.e., the maps in
PR show the brightest values at red regions and the darkest
values at green regions. Luminance is already considered in the
intensity maps, so we ignore this channel here. The pixel value
PR,s(x, y) in map s of pyramid PR is obtained by the distance
between the corresponding pixel PLAB(x, y) and the prototype
for red r = (ra, rb) = (255, 127). Since PLAB(x, y) is of the
form (pa, pb), this yields: PR,s(x, y) = ||(pa, pb), (ra, rb)|| =
√

(pa − ra)2 + (pb − rb)2.
On these pyramids, the color contrast is computed by on-
center-off-surround differences yielding 24 color scale maps
C ′′

γ,s,σ with γ ε {red, green, blue, yellow}, s ε {s2-s4}, and σ ε {3, 7}.
The maps of each color are inter-scale added into 4 color
feature maps C ′

γ =
⊕

s,σ Ĉγ,s,σ .
2) Fusing Saliencies: All feature maps of one feature are

combined into a conspicuity map yielding one map for each
feature: I =

∑

i W(I ′i), O =
∑

θ W(O′
θ), C =

∑

γ W(C ′
γ).

The bottom-up saliency map Sbu is finally determined by
fusing the conspicuity maps: Sbu = W(I) + W(O) + W(C)



The exclusivity weighting W is a very important strategy
since it enables the increase of the impact of relevant maps.
Otherwise, a region peaking out in a single feature would be
lost in the bulk of maps and no pop-out would be possible.
In our context, important maps are those that have few highly
salient peaks. For weighting maps according to the number
of peaks, each map M is divided by the square root of
the number of local maxima m that exceed a threshold t:
W(M) = M/

√
m ∀m : m > t. Furthermore, the maps

are normalized after summation relative to the largest value
within the summed maps. This yields advantages over the
normalization relative to a fixed value (details in [7]).

3) The Focus of Attention (FOA): To determine the most
salient location in Sbu, the point of maximal activation is
located. Starting from this point, region growing recursively
finds all neighbors with similar values within a threshold
and the FOA is directed to this region. Finally, the salient
region is inhibited in the saliency map by zeroing, enabling
the computation of the next FOA.

B. Top-down saliency

1) Learning mode: In learning mode, the user marks a
rectangle in a training image specifying the region that has to
be learned. Then, the system computes the bottom-up saliency
map and the most salient region inside the rectangle. So, the
system is able to determine automatically what is important
in a specified region. It concentrates on parts that are most
salient and disregards the background or less salient parts.

Next, weights are determined for the feature and conspicuity
maps, indicating how important a feature is in the specified
region. The weights are the quotient of the mean saliency in
the target region mr and in the background m(image−r): wi =
mr/m(image−r). This computation considers not only which
features are the strongest in the region of interest, it regards
also which features separate the best region from the rest of
the image.

Several training images: Learning weights from one single
training image usually yields good results if the target object
occurs in all test images in a similar way, i.e., on a similar
background. To enable a more stable recognition even on
varying backgrounds, we determine the average weights from
several training images by computing the geometric mean of
the weights, i.e., wi,(1..n) = n

√

∏n
j=1 wi,j , where n is the

number of training images. An algorithm for choosing the
training images is proposed in [6]. It showed that, usually,
even in complex scenarios 5 training images suffice; for
ball detection, already two training images yielded the best
performance.

2) Search mode: In search mode, firstly the bottom-up
saliency map is computed. Additionally, we determine a top-
down saliency map that competes with the bottom-up map for
saliency. The top-down map is composed of an excitation and
an inhibition map. The excitation map E is the weighted sum
of all feature maps that are important for the learned object,
namely the features with weights greater than 1. The inhibition
map I contains the feature maps that are not present in the
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Fig. 3. Left: Sobel filter applied to a colored image and then thresholded.
Right: Edge, line, diagonal, center surround and 45◦ features are used for
classification.

learned object, namely the features with weights smaller than
1:

E =
P

i
(wi∗Map

i
)

P

j
(wj)

∀i : wi > 1,

I =
P

i
((1/wi)∗Map

i
)

P

j
(wj)

∀i : wi < 1.

The top-down saliency map S(td) is obtained by: S(td) =
E−I . The final saliency map S is composed as a combination
of bottom-up and top-down influences. When fusing the maps,
it is possible to determine the degree to which each map
contributes by weighting the maps with a top-down factor
t ∈ [0..1]: S = (1 − t) ∗ S(bu) + t ∗ S(td).

With t = 1, the system looks only for the specified target.
With t < 1, also bottom-up cues have an influence and
may divert the focus of attention. This is also an important
mechanism in human visual attention. E.g., a person suddenly
entering a room catches immediately our attention, indepen-
dently of the task. For the application discussed in this paper,
we always use t = 1 and use the bottom-up saliency only
to learn the weights of the training objects. Thus, the robot
focuses its attention completely on the ball and not to play
foul on other robots.

III. COLOR-INDEPENDENT BALL CLASSIFICATION

In this section we briefly discuss the classifier for ball detec-
tion that is applied to the foci of attention. The algorithm here
refers to previous work discussed in [15], which was inspired
by Viola and Jones’ boosted cascade of simple classifiers for
fast face detection [20].

A. Color Invariance using Linear Image Filters

The problem with recognizing general shapes, such as balls,
as in our particular case, is the number of possibilities in
the visual appearance of a ball. A ball can take on any
color and size and may have any pattern on its surface. In
order to generalize the concept of a ball, the initial goal
was to eliminate any color information in the data images
representing the balls.

To detect the edges in the image, we use linear image filters
followed by a threshold to eliminate noise data, which would
then be given as input to the classifier, which in turn handles
differences in size, pattern, lighting, etc. For this paper, we are
using a Sobel filter, as described in [4].

In order to eliminate the color information in the images, we
apply the filter to the colored image and then use a threshold t
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Fig. 4. Left: Computation of feature values F in the shaded region is based
on the four upper rectangles. Middle: Calculation of the rotated integral image
Ir . Right: Four lookups in the rotated integral image are required to compute
the feature value a rotated feature Fr .

to include any pixel in any of the 3 color channels that crossed
the threshold t value in the output image. The resulting image
is a binary image including the thresholded pixels of the 3
color channels. A typical output image of this technique is
shown in Fig. 3 (left).

This edge detection and thresholding technique is applied to
all images used as input to the training of the Haar classifier.
The training process is described in the following subsections.

B. Feature Detection using Integral Images

There are many motivations for using features rather than
pixels directly. For mobile robots, a critical motivation is that
feature based systems operate much faster than pixel based
systems [20]. The features are called Haar-like, since they
follow the same structure as the Haar basis, i.e., step functions
introduced by Alfred Haar to define wavelets. They are also
used in [12], [3], [19], [20]. Fig. 3 (right) shows the eleven
basis features, i.e., edge, line, diagonal and center surround
features. The base resolution of the object detector is 30× 30
pixels, thus, the set of possible features in this area is very
large (642592 features, see [12] for calculation details). A
single feature is effectively computed on input images using
integral images [20], also known as summed area tables [12].
An integral image I is an intermediate representation for the
image and contains the sum of gray scale pixel values of image
N with height y and width x, i.e.,

I(x, y) =

x
∑

x′=0

y
∑

y′=0

N(x′, y′).

The integral image is computed recursively, by the formulas:
I(x, y) = I(x, y − 1) + I(x − 1, y) + N(x, y) − I(x − 1, y −
1) with I(−1, y) = I(x,−1) = I(−1,−1) = 0, therefore
requiring only one scan over the input data. This intermediate
representation I(x, y) allows the computation of a rectangle
feature value at (x, y) with height and width (h,w) using four
references (see Fig. 4 (left)):

F (x, y, h, w) = I(x, y) + I(x + w, y + h) −

I(x, y + h) − I(x + w, y).

For the computation of the rotated features, Lienhart et. al.
introduced rotated summed area tables that contain the sum
of the pixels of the rectangle rotated by 45◦ with the bottom-
most corner at (x, y) and extending till the boundaries of the
image (see Fig. 4 (middle and right)) [12]:

Ir(x, y) =

x
∑

x′=0

x−|x′−y|
∑

y′=0

N(x′, y′).

Σ h  (x) < 0t Σ
t

h 
 (x

) >
 0

...

thr. = 0.01048

thr. = −0.000175

−1.0

−1.0

0.9939

−0.9863 0.3326

thr. = 0.06808

thr. = 0.007923

Fig. 5. Left: A Classification and Regression Tree with 4 splits. According
to the specific filter applied to the image input section x, the output of the
tree, ht(x) is calculated, depending on the threshold values. Right: A cascade
of CARTs [15]. ht(x) is determined depending on the path through the tree.

The rotated integral image Ir is computed recursively, i.e.,
Ir(x, y) = Ir(x − 1, y − 1) + Ir(x + 1, y − 1) − Ir(x, y −
2)+N(x, y)+N(x, y−1) using the start values Ir(−1, y) =
Ir(x,−1) = Ir(x,−2) = Ir(−1,−1) = Ir(−1,−2) = 0.
Four table lookups are required to compute the pixel sum of
any rotated rectangle with the formula:

Fr(x, y, h, w) = Ir(x + w − h, y + w + h − 1) + Ir(x, y − 1) −

Ir(x − h, y + h − 1) − Ir(x + w, y + w − 1)

Since the features are compositions of rectangles, they are
computed with several lookups and subtractions weighted with
the area of the black and white rectangles.

To detect a feature, a threshold is required. This threshold is
automatically determined during a fitting process, such that a
minimum number of examples are misclassified. Furthermore,
the return values (α, β) of the feature are determined, such
that the error on the examples is minimized. The examples
are given in a set of images that are classified as positive or
negative samples. The set is also used in the learning phase
that is briefly described next.

C. Learning Classification Functions

1) Classification and Regression Trees: For all 642592
possible features a Classification and Regression Tree (CART)
is created. CART analysis is a form of binary recursive
partitioning. Each node is split into two child nodes, in which
case the original node is called a parent node. The term
recursive refers to the fact that the binary partitioning process
is applied over and over to reach a given number of splits (4 in
this case). In order to find the best possible split features, all
possible splits are calculated, as well as all possible return
values to be used in a split node. The program seeks to
maximize the average “purity” of the two child nodes using
the misclassification error measure. Fig. 5 (left) shows a CART
classifier.

2) Gentle Ada Boost for CARTs: The Gentle Ada Boost
Algorithm [5] is used to select a set of simple CARTs to
achieve a given detection and error rate [12]. In the following,
a detection is referred to as a hit and an error as a false alarm.

The learning is based on N weighted training examples
(x1, y1), . . . , (xN , yN ), where xi are the images and yi ∈
{−1, 1}, i ∈ {1, . . . , N} the classified output. At the begin-
ning of the learning phase the weights wi are initialized with
wi = 1/N . The following three steps are repeated to select
CARTs until a given detection rate d is reached:



1) Every classifier, i.e., a CART, is fit to the data. Hereby
the error e is calculated with respect to the weights wi.

2) The best CART ht is chosen for the classification
function. The counter t is incremented.

3) The weights are updated with wi := wi · e−yiht(xi) and
renormalized.

The final output of the classifier is sign(
∑T

t=1 ht(x)) > 0,
with ht(x) the weighted return value of the CART. Next, a
cascade based on these classifiers is built.

D. The Cascade of Classifiers

The performance of a single classifier is not suitable for
object classification, since it produces a high hit rate, e.g.,
0.999, but also a high error rate, e.g., 0.5. Nevertheless, the
hit rate is much higher than the error rate. To construct an
overall good classifier, several classifiers are arranged in a
cascade, i.e., a degenerated decision tree. In every stage of
the cascade, a decision is made whether the image contains
the object or not. This computation reduces both rates. Since
the hit rate is close to one, their multiplication results also in
a value close to one, while the multiplication of the smaller
error rates approaches zero. Furthermore, this speeds up the
whole classification process.

An overall effective cascade is learned by a simple iterative
method. For every stage the classification function ht(x) is
learned, until the required hit rate is reached. The process
continues with the next stage using the correct classified
positive and the currently misclassified negative examples. The
number of CARTs used in each classifier may increase with
additional stages.

IV. EXPERIMENTS AND RESULTS

First the performance of the classifier is shown. Then,
the attention algorithm is additionally applied to adapt the
detection and to reduce the false positives.

A. Results of the classifier alone

The ball detection cascade was learned with a total of 1000
images, with complex scenes included in the training set,
and tested by using three soccer balls of different colors and
patterns. The process of generating the cascade of classifiers
is relatively time-consuming but it only needs to be executed
once, provided a good cascade is generated. Fig. 6 shows
detection results on five different kinds of balls, thus the
CARTs form a correct dependency of features. Since only the
upper two balls (white and yellow/red ball) and the red one
given in Fig. 7 were used for learning, the figure demonstrates
the classifier’s ability to generalize to all balls.

For each kind of ball we ran the test with 60 images, making
a total of 180 test images. The results in Table I reveal how
many red, white or yellow/red balls were correctly classified or
not detected, as well as the number of false positives for each
ball. The problems we were facing with this approach was
the difficulty to differentiate between soccer balls and other
spherical objects (Fig. 7).

Fig. 6. Five different kind of balls are detected by the classifier.

TABLE I
DETECTION RATE OF THE CASCADE OF CLASSIFIER DEPENDING ON THE

USED NUMBER OF STAGES. THE CASCADE WITH 10 STAGES WAS USED

FOR THE EXPERIMENTS WITH THE ATTENTION SYSTEM.

# stages Correct Not Detected False Positives
red ball 52/60 8/60 114

white ball 9 48/60 12/60 70
yel/red ball 57/60 3/60 108

Total 157/180 23/180 292
red ball 45/60 15/60 52

white ball 10 44/60 16/60 45
yel/red ball 57/60 3/60 63

Total 146/180 34/180 160

red ball 45/60 15/60 51
white ball 11 42/60 18/60 47

yel/red ball 56/60 4/60 65
Total 143/180 37/180 163

red ball 44/60 16/60 26
white ball 12 29/60 31/60 31

yel/red ball 37/60 23/60 23
Total 110/180 70/180 80

The detection rate of the classifier is adjustable, i.e., a lower
number of stages of the cascade increases the number of
detections (hits), but also the amount of false detections. By
combining the classifier and the attention algorithm the false
positive detection rate will be reduced.

B. Combining the classifier and the attention algorithm

The output of the combination of the two algorithms is
the intersection of both result sets. The balls detected must
be found both by the ball classifier as well as the attention
algorithm. First, the foci are found in the image. Then, the
classifier tries to detect balls at these specific regions. The
results of the combination are shown in Table II. The test data
is composed of a set of 60 realistic RoboCup images for each
ball, where there is exactly one ball in each image. These
were taken with backgrounds of different lighting (color) and
complexity. The classifier searches areas of the first 5 foci
found by the attention algorithm.

TABLE II
DETECTION RATE OF COMBINED ALGORITHM. COLUMN 2 (ATTENTION)

SHOWS WHICH OF THE 5 FOCI POINTS TO THE BALL (AVERAGE).

Att. Classifier only Att. and Class.
Found False Pos. Found False Pos.

red Ball 1.0 45/60 52 45/60 3
white ball 1.0 44/60 45 41/60 0

yel/red ball 1.2 57/60 63 55/60 20
Total 1.07 146/180 160 141/180 23

The combination is very useful in eliminating false positives
in images. This is shown in Fig. 7, where the false positives we
were suffering from with the classifier alone are eliminated.



Fig. 7. Top: Input images including round objects. Middle: False alarms in
filtered images. Bottom left: False positives eliminated, ball not found. Bottom
right: False detections eliminated.

The focus of attention is calculated in circa 1.5 sec. and the
classification at these region of interest needs 200 ms (image
size: 240 × 320, Pentium-M 1.7 GHz).

V. CONCLUSIONS

Using a visual attention system combined with a fast
classifier, we have designed a robust ball detection system with
a very low misclassification rate, even in complex, cluttered
images.

Due to the use of an edge detection Sobel filter and a
threshold to preprocess the training images for the cascade,
the classifier is color-invariant, leaving the color to be learned
by the attention system, assuming short-term prior knowledge
about the ball to be used for a RoboCup match. The attention
system is quickly adjusted to the ball with very few images.

The success of the algorithm is reached by only searching
for balls in regions hypothesized by the attention algorithm to
contain the ball, thereby eliminating false positives. Although
the algorithm misses a few balls, what we are concerned with
is how it will perform in the RoboCup environment. In this
case, the reliability of the algorithm seems to be sufficient.
Even if the ball is not detected in one in every 5 pictures,
for example, the robot will still be able to follow it quite
confidently.

Needless to say, much work remains to be done: As the
detection of regions of interest is currently relatively slow
compared to the ball detection, the next step is to work on
increasing the efficiency of the attention system and therefore
of the whole detection scheme. In addition it is planned to

enhance the presented algorithms by adding time dependent
behavior either by using standard tracking with particle filters
or by using a time dependent attention control.
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